South East Asian J. of Mathematics and Mathematical Sciences Vol. 20, Proceedings (2022), pp. 205-214

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

PACKING RELATED PARAMETERS OF GENERALIZED JAHANGIR GRAPHS

C. Gayathri, K. Karuppasamy and S. Saravanakumar*

Department of Mathematics, Kalasalingam Academy of Research and Education, Krishnankoil - 626126, Tamil Nadu, INDIA

E-mail: gaya320102012@gmail.com, karuppasamyk@gmail.com

*Department of Mathematics, Thiagarajar College of Engineering, Madurai - 625015, Tamil Nadu, INDIA

E-mail: alg.ssk@gmail.com

(Received: Apr. 08, 2022 Accepted: Jul. 28, 2022 Published: Aug. 30, 2022)

Special Issue Proceedings of National Conference on "Emerging Trends in Discrete Mathematics, NCETDM - 2022"

Abstract: In a graph G = (V, E), a set $S \subseteq V(G)$ is 2-packing if $N[u] \cap N[v] = \phi$ for every $u, v \in S$, and S is called open packing if $N(u) \cap N(v) = \phi$ for every $u, v \in S$. An open packing set S is an outer-connected open packing set if either S = V(G) or $\langle V - S \rangle$ is connected. The largest cardinalities of 2-packing, open packing, and outer-connected open packing in S are respectively called the 2-packing number S, the open packing number S, and the outer-connected open packing number S, of a graph S. In this paper, we compute these numbers for the generalized Jahangir graphs.

Keywords and Phrases: Packing number, 2-packing number, open packing number, outer-connected open packing number, Jahangir graph, generalized Jahangir graph.

2020 Mathematics Subject Classification: 05C70.

1. Introduction

Throughout this paper, we use only finite, simple, non-trivial and connected graphs, and we follow the notations and definitions mentioned in [4].

A set $S \subseteq V(G)$ is called 2-packing of G if any pair of vertices in S having the distance of at least 3 in G and a set $S \subseteq V(G)$ is called open packing of G if V(G) has no vertex which is a common neighbor between any two vertices in S. The 2-packing number and the open packing number of G are defined as the maximum cardinalities of a maximal 2-packing and a maximal open packing of G respectively and their respective notations are denoted by ρ and ρ^o . Results regarding the 2-packing number can be found in [3, 7, 5, 14]. The open packing number was introduced in [7] and further investigations about ρ^o were done in [6, 10, 11, 12] and elsewhere. An open packing set S is called an outer-connected open packing set(ocop-set) if either S = V(G) or $\langle V - S \rangle$ is connected. The maximum cardinality of a maximal outer-connected open packing is called the outer-connected open packing number, which is denoted by $\rho^o_{oc}(G)$. The concept of outer-connected open packing was initiated in [13].

For $n \geq 2$ and $m \geq 2$, the generalized Jahangir graph $J_{n,m}$ is a graph on nm+1 vertices consisting of a cycle C_{nm} with one additional vertex which is adjacent to m vertices of C_{nm} at distance n to each other on C_{nm} . The generalized Jahangir graph $J_{n,m}$ was introduced in [2]. Hereafter, several authors have worked on the generalized Jahangir graph for determining the covering number and domination related parameters of $J_{n,m}$, one can see [1, 8, 9]. From this motivation, we give the exact values of packing related parameters such as the 2-packing number, the open packing number and the outer-connected open packing number of $J_{n,m}$ for all $n \geq 2$ and $m \geq 3$ in this paper. To accomplish this work, we consider the following note, propositions and theorems.

Figure 1.1. Generalized Jahangir graph $J_{n,m}$

Note 1.1. For $J_{n,m}$, we follow the notations given in Figure 1.1. and we use the set $V(C_j^*)$ instead of the set $V(C_j) \setminus N[w]$ for all $1 \le j \le m$.

Proposition 1.2. [6] For the cycle C_n on $n \geq 3$ vertices,

$$\rho^{o}(C_{n}) = \begin{cases} \frac{n}{2} - 1 & if \ n \equiv 2 \pmod{4} \\ \left\lfloor \frac{n}{2} \right\rfloor & otherwise \end{cases}$$

Proposition 1.3. [6] For the path P_n on $n \geq 2$ vertices,

$$\rho^{o}(P_{n}) = \begin{cases} \frac{n}{2} & if \ n \equiv 0 \pmod{4} \\ \left\lfloor \frac{n+2}{2} \right\rfloor & otherwise \end{cases}$$

Theorem 1.4. [7] For any graph G, $\rho(G) \leq \gamma(G)$.

Theorem 1.5. [10] For any graph G, $\rho^{o}(G) \leq \gamma_{t}(G)$.

Theorem 1.6. [9] For $n, m \geq 2$, $\gamma(J_{n,m}) = \lceil \frac{mn}{3} \rceil$.

Theorem 1.7. [9] For $m \geq 2$, $\gamma_t(J_{3,m}) = m + 1$.

Theorem 1.8. [9] For $n \ge 4$ and $m \ge 2$,

$$\gamma_t(J_{n,m}) = \begin{cases} \frac{nm}{2} & if \ nm \equiv 0 \pmod{4} \\ \frac{nm}{2} + 1 & if \ nm \equiv 2 \pmod{4} \\ \frac{nm+1}{2} & Otherwise \end{cases}$$

Theorem 1.9. [13] For any graph G, $\rho_{oc}^{o}(G) \leq \rho^{o}(G)$.

2. Main Results

In this section, we evaluate the exact values of ρ , ρ^o and ρ^o_{oc} for $J_{n,m}$. Let us start with the following observations.

Observation 2.1. Let $S \subseteq V(J_{n,m})$. Then

- (i) $|S \cap N(w)| \leq 1$ if S is an open packing set of $J_{n,m}$.
- (ii) $|S \cap N[w]| \leq 1$ if S is a 2-packing set of $J_{n,m}$.

Observation 2.2. Let S be an open packing set of $J_{n,m}$ and let $v \in S$. Then for any $x \in N(v)$, the set S contains no vertex from $N(x) \setminus \{v\}$.

The following theorem gives the value of the 2-packing number of $J_{n,m}$

Theorem 2.3. For the generalized Jahangir graph $J_{n,m}$ with $m \geq 3$ and $n \geq 2$, we have

$$\rho(J_{n,m}) = \begin{cases} \frac{mn}{3} & if \ n \equiv 0 \pmod{3} \\ \left\lfloor \frac{n}{3} \right\rfloor m + 1 & if \ n \equiv 1 \pmod{3} \\ \left\lceil \frac{m(2n-1)}{6} \right\rceil & if \ n \equiv 2 \pmod{3} \end{cases}$$

Proof. First assume that n=2 and $m\geq 3$ and let $S=\{v_3\}\cup\{v_{2+4j}:1\leq j\leq \lceil\frac{m}{2}\rceil-1\}$. Then S is a 2-packing set of $J_{2,m}$ as the distance between any two vertices of S is at least 3 in $J_{2,m}$ so that $\rho(J_{2,m})\geq |S|=1+\lceil\frac{m}{2}\rceil-1=\lceil\frac{m}{2}\rceil$. For the other inequality, let D be a maximal 2-packing set of $J_{2,m}$. Then the vertex w of $J_{2,m}$ is either belongs to D or not belongs to D. If $w\in D$, then $D=\{w\}$. Suppose that $w\notin D$. Then by Observation 2.1.(ii), D contains at most one vertex from N(w) and at most $\lceil\frac{m}{2}\rceil-1$ vertices from $V(J_{2,m})\setminus N[w]$ and hence $\rho(J_{2,m})\leq |D|\leq 1+\lceil\frac{m}{2}\rceil-1$.

Now, we consider the graph $J_{n,m}$ with $m \geq 3$ and $n \geq 3$.

If $n \equiv 0 \pmod{3}$, then the set $S_1 = \left\{ v_{3a-1} : 1 \leq a \leq \frac{mn}{3} \right\}$ is a 2-packing set of $J_{n,m}$ and hence $\rho(J_{n,m}) \geq |S_1| = \frac{mn}{3}$ and by Theorems 1.4 and 1.6, we obtain the inequality $\rho(J_{n,m}) \leq \gamma(J_{n,m}) = \left\lceil \frac{mn}{3} \right\rceil$ and hence $\rho(J_{n,m}) = \frac{mn}{3}$. For otherwise consider the following cases.

Case 1. $n \equiv 1 \pmod{3}$

Consider the set $Q = \bigcup_{i=0}^{m-1} Q_i \cup \{w\}$, where $Q_i = \{v_{in+3a} : 1 \le a \le \lfloor \frac{n}{3} \rfloor\}$ for all $0 \le i \le m-1$. Since the distance between any two vertices in the set Q is more than 2, the set Q is a 2-packing set of $J_{n,m}$ and so $\rho(J_{n,m}) \ge |Q| = 1 + m \lfloor \frac{n}{3} \rfloor$. Since by Observation 2.1.(ii), any maximal 2-packing set of $J_{n,m}$ contains at most one vertex from N[w] and at most $\lfloor \frac{n}{3} \rfloor$ vertices from set $V(C_j^*)$ for each $j, 1 \le j \le m$, it follows that $\rho(J_{n,m}) \le 1 + m \lfloor \frac{n}{3} \rfloor$ and therefore $\rho(J_{n,m}) = \lfloor \frac{n}{3} \rfloor m + 1$.

Case 2. $n \equiv 2 \pmod{3}$

Define
$$R_1 = \{v_{3a+1} : 0 \le a \le \frac{n-2}{3}\}, R_m = \{v_{(m-1)n+3b+3} : 0 \le b \le \frac{n-5}{3}\}$$
 and
$$R_j = \begin{cases} v_{jn+3c+2} & \text{if } j \text{ is even} \\ v_{jn+3d+3} & \text{if } j \text{ is odd} \end{cases}$$

for all $2 \leq j \leq m-1$, where $1 \leq c \leq \frac{n+1}{3}$ and $1 \leq d \leq \frac{n-2}{3}$. Let $R = \bigcup_{j=1}^m R_j$. Then any two vertices in R are at distance at least three, which implies that R is a 2-packing set of $J_{n,m}$ and hence $\rho(J_{n,m}) \geq |R| = \left(\frac{n-2}{3}+1\right)+\left(\frac{n-5}{3}+1\right)+\left(\frac{m-2}{2}\left[\frac{n-2}{3}+\frac{n+1}{3}\right]\right) = \frac{m(2n-1)}{6}$. Let D_1 be a maximal 2-packing set of $J_{n,m}$. If

 $w \in D_1$, then D_1 contains at most $\left(\frac{n-2}{3}\right)$ vertices from each set $V(C_x^*)$, where $1 \le x \le m$ and thus $\rho(J_{n,m}) \le |D_1| = m \left(\frac{n-2}{3}\right)$. For otherwise let $|D_1 \cap N[w]| \le 1$ which is guaranteed by Observation 2.1.(ii). Suppose that $|D_1 \cap N[w]| = 1$. Without loss of generality, let $D_1 \cap N[w] = \{v_1\}$. Then D_1 has at most $\left(\frac{n-2}{3}\right)$ vertices from each set $V(C_1^*)$, $V(C_m^*)$ and $V(C_y^*)$, where y is odd $(2 \le y \le m-1)$ together with at most $\left(\frac{n+1}{3}\right)$ vertices from $V(C_z^*)$, where z is even $(2 \le z \le m-1)$, which implies that $\rho(J_{n,m}) \le |D_1| = 1 + \left(\frac{m+2}{2}\right) \left(\frac{n-2}{3}\right) + \left(\frac{m-2}{2}\right) \left(\frac{n+1}{3}\right) = \frac{m(2n-1)}{6}$. If $D_1 \cap N[w] = \phi$, then all the vertices in D_1 are from $V(C_r^*)$, where $1 \le r \le m$. In particular, D_1 contains $\left(\frac{n-2}{3}\right)$ vertices for odd r and $\left(\frac{n+1}{3}\right)$ vertices for even r. Therefore, $\rho(J_{n,m}) \le \left(\frac{m-1}{2}\right) \left(\frac{n-2}{3}\right) + \left(\frac{m+1}{2}\right) \left(\frac{n+1}{3}\right) = \frac{2m(n-1)+3}{6}$.

Next we determine the value of the open packing number for generalized Jahangir graph.

Theorem 2.4. Let $J_{n,m}$ be the generalized Jahangir graph with $n \geq 2$ and $m \geq 3$. Then

$$\rho^{o}(J_{n,m}) = \begin{cases} \frac{mn}{2} & if \ n \equiv 0 \pmod{4} \\ \left\lfloor \frac{m(n-1)}{2} + 1 \right\rfloor & otherwise \end{cases}$$

Proof. For n=2 and $m\geq 3$, the set $S=\{v_1,v_2\}\cup \{v_{2+4j}:1\leq j\leq \lfloor\frac{m+2}{2}\rfloor-2\}$ is an open packing set of $J_{2,m}$ because of the intersection of open neighborhood of any two vertices in S is empty. Therefore, $\rho^o(J_{2,m})\geq |S|=2+\lfloor\frac{m+2}{2}\rfloor-2$. Now, take D as a maximal open packing of $J_{2,m}$. If D contains the vertex w, then by the Observation 2.1.(i), D contains at most one vertex from N(w) and thus $\rho^o(G)\leq |D|\leq 2$. Suppose $w\notin D$. Then D contains exactly one vertex from N(w) and at most $\frac{m}{2}$ vertices from $V(J_{2,m})\setminus N[w]$ and hence $\rho^o(J_{2,m})\leq |D|\leq \frac{m}{2}+1=\frac{m+2}{2}$. Now, let the graph $J_{n,m}$ with $n\geq 3$ and $m\geq 3$. Suppose that $n\equiv 0 \pmod{4}$. Then the set $B_1=\{v_{2+4j},v_{3+4j}:0\leq j\leq \frac{nm}{4}-1\}$ forms an open packing set of $J_{n,m}$ so that $\rho^o(J_{n,m})\geq |B_1|=\frac{mn}{2}$ and by Theorems 1.5 and 1.8, we have $\rho^o(J_{n,m})\leq \gamma_t(J_{n,m})=\frac{mn}{2}$. Therefore $\rho^o(J_{n,m})=\frac{mn}{2}$ when $n\equiv 0 \pmod{4}$. If $n\not\equiv 0 \pmod{4}$, then consider the following cases.

Case 1. $n \equiv 1 \pmod{4}$

The set $B_2 = \bigcup_{i=1}^m S_i \cup \{w\}$, where $S_i = \{v_{(i-1)n+4a-1}, v_{(i-1)n+4a} : 1 \le a \le \frac{n-1}{4}\}$ is an open packing set of $J_{n,m}$ so that $\rho^o(J_{n,m}) \ge |B_2| = \frac{m(n-1)}{2} + 1$. Let us take a maximal open packing of $J_{n,m}$ be D_1 .

Subcase 1.1. $w \in D_1$

Suppose that $D_1 \cap N(w) = \phi$. Since by Observation 2.2, D_1 contains the vertices only from m distinct paths P_{n-3} of $J_{n,m}$ mentioned in Figure 1.1. Now, by Proposition 1.3, D_1 has at most $\left\lfloor \frac{n-1}{2} \right\rfloor$ vertices from each m paths in $J_{n,m}$ and thus $\rho^o(J_{n,m}) \leq |D_1| \leq 1 + \frac{m(n-1)}{2}$. Suppose $D_1 \cap N(w) \neq \phi$. Then by Observation 2.1.(i), $|D_1 \cap N(w)| = 1$. Without loss of generality, let $D_1 \cap N(w) = \{v_1\}$. Then D_1 can have at most $\frac{n-3}{2}$ vertices from each set $V(C_1^*)$ and $V(C_m^*)$. Furthermore, D_1 has at most $\frac{n-1}{2}$ vertices from each set $V(C_j^*)$, $2 \leq j \leq m-1$, which implies that $\rho^o(J_{n,m}) \leq |D_1| \leq 2 + (m-2) \left(\frac{n-2}{2}\right) + 2 \left(\frac{n-3}{2}\right) = \frac{m(n-2)}{2} + 1$.

Subcase 1.2. $w \notin D_1$

The set D_1 contains at most $\frac{n-1}{2}$ vertices from each set $V(C_j^*)$, $1 \le j \le m$ and exactly one vertex from N(w) so that $\rho^o(J_{n,m}) \le |D_1| = \frac{m(n-1)}{2} + 1$.

Case 2. $n \equiv 2 \pmod{4}$

For $1 \leq j \leq m$, define the sets Q_j as follows. Let $Q_1 = \{v_1, v_2\} \cup \{v_{4b+1}, v_{4b+2}\}$ and for $2 \leq j \leq m$, let $Q_j = \{v_{(j-1)n+4b-1}, v_{(j-1)n+4b}\}$ if j is even and let $Q_j = \{v_{(j-1)n+4b-2}, v_{(j-1)n+4b-1}\}$ if j is odd, where $1 \leq b \leq \frac{n-2}{4}$. Now, consider the set $B_3 = \bigcup_{j=1}^m Q_j \cup \{v_{zn} : z \text{ is odd }\}$, where $3 \leq z \leq m-1$ when m is even and $3 \leq z \leq m-2$ when m is odd. Since no two vertices in B_3 have a common vertex in $J_{n,m}$ and thus the set B_3 is an open packing set of $J_{n,m}$. Hence if m is even, then $\rho^o(J_{n,m}) \geq |B_3| = 2 + \frac{n-2}{2} + (m-1)\left(\frac{n-2}{2}\right) + \frac{m-2}{2} = \frac{m(n-1)}{2} + 1$ and if m if odd, then $\rho^o(J_{n,m}) \geq |B_3| = 2 + \frac{n-2}{2} + (m-1)\left(\frac{n-2}{2}\right) + \frac{m-3}{2} = \frac{m(n-1)+1}{2}$, which implies that $\rho^o(J_{n,m}) \geq \left\lfloor \frac{m(n-1)}{2} + 1 \right\rfloor$. For the other inequality, let D_2 be a maximal open packing set of $J_{n,m}$. If $w \in D_2$, then by similar argument in Subcase 1.1, we have $\rho^o(J_{n,m}) \leq |D_2| = \frac{m(n-1)}{2} + 1$. Suppose $w \notin D_2$. Then $|N(w) \cap D_2| = 1$. Then D_2 has at most $\frac{n-2}{2}$ vertices from each set $V(C_n^*)$, (i is odd) and at most $\frac{n-2}{2}$ vertices from each $V(C_i^*)$, (i is odd) and at most $\frac{n-2}{2}$ vertices from each $V(C_i^*)$, (i is even) in $J_{n,m}$, it follows that $\rho^o(J_{n,m}) \leq |D_2| = \left\lfloor \frac{m(n-1)}{2} + 1 \right\rfloor$.

Case 3. $n \equiv 3 \pmod{4}$

Consider the set $B_4 = \bigcup_{k=3}^m R_k \cup R_1 \cup R_2 \cup A_t$, where $R_k = \{v_{(k-1)n+4c-1}, v_{(k-1)n+4c}\}$, $R_1 = \{v_1, v_2\} \cup \{v_{4c+1}, v_{4c+2}\}$, $R_2 = \{v_{n+4d-2}, v_{n+4d-1}\}$, $A_t = \{v_{tn} : 3 \le t \le m-1\}$, $1 \le c \le \frac{n-3}{4}$ and $1 \le d \le \frac{n+1}{4}$. Therefore $|\bigcup_{k=3}^m R_k| = \sum_{k=3}^m |R_k| = (m-2)(\frac{n-3}{2})$, $|R_1| = 2 + \frac{n-3}{2}$, $|R_2| = \frac{n+1}{2}$ and $|A_t| = m-3$. Since no two vertices in B_4 have a common neighbor so that B_4 forms an open packing set of $J_{n,m}$ and hence $\rho^o(J_{n,m}) \ge |B_4| = \frac{m(n-1)}{2} + 1$. Now, take D_3 as a maximal open packing of $J_{n,m}$.

Subcase 3.1. $w \in D_3$

Suppose $D_3 \cap N(w) = \phi$. Then by Observation 2.2.(i), $|D_3| = m\rho^o(P_{n-3}) + 1$ and by Proposition 1.3, $\rho^o(P_{n-3}) = \frac{n-3}{2}$ so that $\rho^o(J_{n,m}) \leq |D_3| = 1 + \frac{m(n-3)}{2}$. If $D_3 \cap N(w) \neq \phi$, then by Observation 2.1.(i), $|D_3 \cap N(w)| = 1$ and let $D_3 \cap N(w) = \{v_1\}$. Since $v_1 \in D_3$ and by Observation 2.2, the vertices v_3 and v_{mn-1} does not belong to D_3 . Thus D_3 can have vertices from each two paths P_{n-4} placed on C_1 and C_m and from remaining (m-2) paths P_{n-3} (mentioned in Figure 1.2.) in $J_{n,m}$. It follows that $|D_3| = 2\rho^o(P_{n-4}) + (m-2)\rho^o(P_{n-3}) + 2$ and by Proposition 1.3, $|D_3| = 2\left\lfloor \frac{n-2}{2}\right\rfloor + (m-2)\left(\frac{n-3}{2}\right) + 2$. Hence $\rho^o(J_{n,m}) \leq |D_3|$

Subcase 3.2. $w \notin D_3$

In this case D_3 contains exactly one vertex from N(w) and D_3 contains at most $\frac{n+1}{2}$ vertices from $V(C_1^*)$ and at most $\frac{n-3}{2}$ vertices from $V(C_m^*)$. Moreover D_3 contain at most $\frac{n-1}{2}$ each set $V(C_j^*)$, $2 \le j \le m-1$ so that $\rho^o(J_{n,m}) \le |D_3| = 1 + \frac{m(n-1)}{2}$. This completes the proof.

The following theorem gives the exact value of an outer-connected open packing set for the Jahangir graph $J_{n,m}$.

Theorem 2.5. For a generalized Jahangir graph $J_{n,m}$ with $n \geq 2$ and $m \geq 3$, we have

$$\rho_{oc}^{o}(J_{n,m}) = \begin{cases} \left\lceil \frac{m-1}{2} \right\rceil + 1 & \text{if } n = 2\\ m+1 & \text{if } n = 3\\ 2m & \text{if } n \ge 4 \end{cases}$$

Proof. Let n=2 and $m\geq 3$. Then the set $S=\{v_1\}\cup \{v_{4i+2}:0\leq i\leq \lceil\frac{m-1}{2}\rceil-1\}$ is open packing and $\langle V(J_{2,m})\setminus S\rangle$ is connected and hence S is an ocop-set of $J_{2,m}$ so that $\rho_{oc}^o(J_{2,m})\geq \lceil\frac{m-1}{2}\rceil+1$. Now, let D be a maximal ocop-set of $J_{2,m}$. Then D should contains exactly one vertex in N(w), let it be x. Furthermore, if $w\in D$ then $\langle J_{2,m}\setminus \{w,x\}\rangle$ is isomorphic to the path P_{nm-1} . Since each internal vertex of a path is a cut vertex, it follows that D does not contains any internal vertex of P_{nm-1} and by Observation 2.2, end vertices of P_{nm-1} does not belong to D and so $D=\{w,x\}$ is the one and only ocop-set of $J_{2,m}$. If $w\notin D$, then D has exactly one vertex from each cycle C_i where $1\leq i\leq m-1$ and i is odd, which implies that $|D|\leq \lceil\frac{m-1}{2}\rceil+1$ and hence $\rho_{oc}^o(J_{2,m})=\lceil\frac{m-1}{2}\rceil+1$.

If n=3 and $m \geq 3$, then the set $S_1 = \{v_1, v_2, v_5\} \cup \{v_{3j+3} : 1 \leq j \leq m-2\}$ is an ocop-set of $J_{3,m}$ and therefore $\rho_{oc}^o(J_{3,m}) \geq m+1$. Now, from the Thereoms 1.5, 1.8 and 1.9, we have $\rho_{oc}^o(G) \leq \rho^o(J_{n,m}) \leq \gamma_t(J_{n,m}) = m+1$.

Now, consider the graph $J_{n,m}$ for all $n \geq 4$ and $m \geq 3$. For $1 \leq i, j \leq 2m$, define the set $S_2 = \{v_{2i} : i \text{ is } odd\} \cup \{v_{2j-1} : j \text{ is } even\}$. Then the graph $\langle V(J_{n,m}) \setminus S_2 \rangle$ is connected and no two vertices of S_2 have a common neighbor in $J_{n,m}$, which leads that S_2 is an ocop-set of $J_{n,m}$ and hence $\rho_{oc}^o(J_{n,m}) \geq 2m$.

For the other inequality let D_1 be a maximal ocop-set of $J_{n,m}$. Suppose $w \in D_1$. Then by Observation 2.1.(i), $|D_1 \cap N(w)| \le 1$. If $|D_1 \cap N(w)| = 1$, then $|D_1| = 2$. Suppose $|D_1 \cap N(w)| = 0$. Then by Observation 2.2 and by the definition of ocop-set, D_1 has exactly one vertex from $V(J_{n,m}) \setminus N[w]$ when n = 4 and D_1 has exactly one pair of adjacent vertices from $V(J_{n,m}) \setminus N[w]$ when $n \ge 5$ so that $|D_1| \le 3$.

Now, consider the set D_1 such that $w \notin D_1$. If $D_1 \cap N(w) = \phi$, then D_1 has exactly two adjacent vertices from each set $V(C_r) \setminus N[w]$, where $1 \le r \le m$, and hence $|D_1| \le 2m$; Otherwise let $D_1 \cap N(w) = \{z\}$. Then D_1 has exactly one vertex which is adjacent to z from the two consecutive cycles C_s and C_t in which the cycles C_s and C_t share the common edge wz, where $1 \le s, t \le m$ and $s \ne t$. Moreover, from each set $V(C_k) \setminus N[w]$, one pair of adjacent vertices belong to D_1 , where $1 \le k \le m$ and $k \ne s, t$, which gives that $|D_1| \le 2 + 2m - 4 = 2m - 2$. Hence in all possibilities of the set D_1 , we have $\rho_{oc}^o(J_{n,m}) \le 2m$.

3. Conclusion

In this paper, we completely determined some packing related parameters such as 2-packing number, open packing number, and outer-connected open packing number for the generalized Jahangir graph. In this way, finding the values of k-limited packing number for all $k \geq 2$ of generalized Jahangir graph $J_{n,m}$ is an interesting one.

Acknowledgment

The authors would like to thank all the referees for their valuable suggestions to improve the quality of this paper.

References

- [1] Angel D., Amutha A., A Study on the Covering Number Of Generalized Jahangir Graphs $J_{s,m}$, International Journal of Pure and Applied Mathematics, 87 (2013), 835-844.
- [2] Ali K., Baskoro E. T., Tomescu I., On the Ramsey numbers for paths and generalized Jahangir graphs $J_{s,m}$, Bull. Math. Soc. Sci. Math., 51 (2008), 177-182.
- [3] Biggs N., Perfect codes in graphs, J. Combin. Theory Ser. B., 15 (1973), 289-296.

- [4] Chartrand G. and Lesniak, Graphs and Digraphs, Fourth Edition, CRC Press, Boca Raton, 2005.
- [5] Henning M. A., Packing in trees, Discrete Math., 186 (1998), 145-155.
- [6] Henning M. A. and Slater P. J., Open packing in graphs, J. Combin. Math. Combin. Comput., 29 (1999), 3-16.
- [7] Meir A. and Moon J. W., Relations between packing and covering numbers of a tree, Pacific J. Math., 61 (1975), 225-233.
- [8] Mojdeh M. A., Ghameshlou A. N., Domination in Jahangir Graph $J_{2,m}$, Int. J. Contemp. Math. Sci., 2 (2007), 1193-1199.
- [9] Mtarneh S., Hasni R., Akhbari M. H., and Movahedi F., Some Domination Parameters in Generalized Jahangir Graph $J_{n,m}$, Malaysian Journal of Mathematical Sciences, 13 (2019), 113-121.
- [10] Rall D. F., Total Domination in Categorical Products of Graphs, Discuss. Math. Graph Theory., 25 (2005), 35-44.
- [11] Sahul Hamid I. and Saravanakumar S., On Open Packing Number of Graphs, Iran. J. Math. Sci. Inform., 12 (2017), 107-117.
- [12] Sahul Hamid I. and Saravanakumar S., Packing Parameters in Graphs, Discuss. Math. Graph Theory., 35 (2015), 5-16.
- [13] Saravanakumar S. and Gayathri C., Outer-connected Open Packing Sets in Graphs, Asian-Eur. J. Math., 15 (2022), 2250083.
- [14] Topp J. and Volkmann L., On packing and covering number of graphs, Discrete Math., 96 (1991), 229-238.