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Abstract: In a graph G = (V,E), a set S ⊆ V (G) is 2-packing if N [u]∩N [v] = ϕ
for every u, v ∈ S, and S is called open packing if N(u) ∩ N(v) = ϕ for every
u, v ∈ S. An open packing set S is an outer-connected open packing set if ei-
ther S = V (G) or ⟨V − S⟩ is connected. The largest cardinalities of 2-packing,
open packing, and outer-connected open packing in G are respectively called the 2-
packing number (ρ), the open packing number (ρo), and the outer-connected open
packing number (ρooc) of a graph G. In this paper, we compute these numbers for
the generalized Jahangir graphs.
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1. Introduction

Throughout this paper, we use only finite, simple, non-trivial and connected
graphs, and we follow the notations and definitions mentioned in [4].

A set S ⊆ V (G) is called 2-packing of G if any pair of vertices in S having
the distance of at least 3 in G and a set S ⊆ V (G) is called open packing of G
if V (G) has no vertex which is a common neighbor between any two vertices in
S. The 2-packing number and the open packing number of G are defined as the
maximum cardinalities of a maximal 2-packing and a maximal open packing of
G respectively and their respective notations are denoted by ρ and ρo. Results
regarding the 2-packing number can be found in [3, 7, 5, 14]. The open packing
number was introduced in [7] and further investigations about ρo were done in [6,
10, 11, 12] and elsewhere. An open packing set S is called an outer-connected open
packing set(ocop-set) if either S = V (G) or ⟨V − S⟩ is connected. The maximum
cardinality of a maximal outer-connected open packing is called the outer-connected
open packing number, which is denoted by ρooc(G). The concept of outer-connected
open packing was initiated in [13].

For n ≥ 2 and m ≥ 2, the generalized Jahangir graph Jn,m is a graph on nm+1
vertices consisting of a cycle Cnm with one additional vertex which is adjacent to
m vertices of Cnm at distance n to each other on Cnm. The generalized Jahangir
graph Jn,m was introduced in [2]. Hereafter, several authors have worked on the
generalized Jahangir graph for determining the covering number and domination
related parameters of Jn,m , one can see [1, 8, 9]. From this motivation, we give
the exact values of packing related parameters such as the 2-packing number, the
open packing number and the outer-connected open packing number of Jn,m for all
n ≥ 2 and m ≥ 3 in this paper. To accomplish this work, we consider the following
note, propositions and theorems.
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Figure 1.1. Generalized Jahangir graph Jn,m
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Note 1.1. For Jn,m, we follow the notations given in Figure 1.1. and we use the
set V (C∗

j ) instead of the set V (Cj) \N [w] for all 1 ≤ j ≤ m.

Proposition 1.2. [6] For the cycle Cn on n ≥ 3 vertices,

ρo(Cn) =


n
2
− 1 if n ≡ 2(mod 4)⌊
n
2

⌋
otherwise

Proposition 1.3. [6] For the path Pn on n ≥ 2 vertices,

ρo(Pn) =


n
2

if n ≡ 0(mod 4)⌊
n+2
2

⌋
otherwise

Theorem 1.4. [7] For any graph G, ρ(G) ≤ γ(G).

Theorem 1.5. [10] For any graph G, ρo(G) ≤ γt(G).

Theorem 1.6. [9] For n,m ≥ 2, γ(Jn,m) =
⌈
mn
3

⌉
.

Theorem 1.7. [9] For m ≥ 2, γt(J3,m) = m+ 1.

Theorem 1.8. [9] For n ≥ 4 and m ≥ 2,

γt(Jn,m) =


nm
2

if nm ≡ 0(mod 4)

nm
2

+ 1 if nm ≡ 2(mod 4)

nm+1
2

Otherwise

Theorem 1.9. [13] For any graph G, ρooc(G) ≤ ρo(G).

2. Main Results
In this section, we evaluate the exact values of ρ, ρo and ρooc for Jn,m. Let us

start with the following observations.

Observation 2.1. Let S ⊆ V (Jn,m). Then

(i) |S ∩N(w)| ≤ 1 if S is an open packing set of Jn,m.

(ii) |S ∩N [w]| ≤ 1 if S is a 2-packing set of Jn,m.

Observation 2.2. Let S be an open packing set of Jn,m and let v ∈ S. Then for
any x ∈ N(v), the set S contains no vertex from N(x) \ {v}.

The following theorem gives the value of the 2-packing number of Jn,m

Theorem 2.3. For the generalized Jahangir graph Jn,m with m ≥ 3 and n ≥ 2,
we have
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ρ(Jn,m) =


mn
3

if n ≡ 0(mod 3)⌊
n
3

⌋
m+ 1 if n ≡ 1(mod 3)⌈

m(2n−1)
6

⌉
if n ≡ 2(mod 3)

Proof. First assume that n = 2 and m ≥ 3 and let S = {v3} ∪{v2+4j : 1 ≤ j ≤⌈
m
2

⌉
− 1}. Then S is a 2-packing set of J2,m as the distance between any two

vertices of S is at least 3 in J2,m so that ρ(J2,m) ≥ |S| = 1 +
⌈m
2

⌉
− 1 =

⌈m
2

⌉
.

For the other inequality, let D be a maximal 2-packing set of J2,m. Then the
vertex w of J2,m is either belongs to D or not belongs to D. If w ∈ D, then
D = {w}. Suppose that w /∈ D. Then by Observation 2.1.(ii), D contains at most

one vertex from N(w) and at most
⌈m
2

⌉
−1 vertices from V (J2,m)\N [w] and hence

ρ(J2,m) ≤ |D| ≤ 1 +
⌈
m
2

⌉
− 1.

Now, we consider the graph Jn,m with m ≥ 3 and n ≥ 3.
If n ≡ 0(mod 3), then the set S1 =

{
v3a−1 : 1 ≤ a ≤ mn

3

}
is a 2-packing set

of Jn,m and hence ρ(Jn,m) ≥ |S1| = mn
3

and by Theorems 1.4 and 1.6, we obtain
the inequality ρ(Jn,m) ≤ γ(Jn,m) =

⌈
mn
3

⌉
and hence ρ(Jn,m) =

mn
3
. For otherwise

consider the following cases.

Case 1. n ≡ 1(mod 3)

Consider the set Q = ∪m−1
i=0 Qi ∪{w}, where Qi =

{
vin+3a : 1 ≤ a ≤

⌊
n
3

⌋}
for all

0 ≤ i ≤ m − 1. Since the distance between any two vertices in the set Q is more
than 2, the set Q is a 2-packing set of Jn,m and so ρ(Jn,m) ≥ |Q| = 1+m

⌊
n
3

⌋
. Since

by Observation 2.1.(ii), any maximal 2-packing set of Jn,m contains at most one
vertex from N [w] and at most

⌊
n
3

⌋
vertices from set V (C∗

j ) for each j, 1 ≤ j ≤ m,

it follows that ρ(Jn,m) ≤ 1 +m
⌊
n
3

⌋
and therefore ρ(Jn,m) =

⌊
n
3

⌋
m+ 1.

Case 2. n ≡ 2(mod 3)

Define R1 =
{
v3a+1 : 0 ≤ a ≤ n−2

3

}
, Rm =

{
v(m−1)n+3b+3 : 0 ≤ b ≤ n−5

3

}
and

Rj =

 vjn+3c+2 if j is even

vjn+3d+3 if j is odd

for all 2 ≤ j ≤ m − 1, where 1 ≤ c ≤ n+1
3

and 1 ≤ d ≤ n−2
3
. Let R = ∪m

j=1Rj.
Then any two vertices in R are at distance at least three, which implies that R
is a 2-packing set of Jn,m and hence ρ(Jn,m) ≥ |R| =

(
n−2
3

+ 1
)
+

(
n−5
3

+ 1
)
+(

m−2
2

[
n−2
3

+ n+1
3

])
= m(2n−1)

6
. Let D1 be a maximal 2-packing set of Jn,m. If
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w ∈ D1, then D1 contains at most
(
n−2
3

)
vertices from each set V (C∗

x), where
1 ≤ x ≤ m and thus ρ(Jn,m) ≤ |D1| = m

(
n−2
3

)
. For otherwise let |D1 ∩N [w]| ≤ 1

which is guaranteed by Observation 2.1.(ii). Suppose that |D1 ∩N [w]| = 1. With-
out loss of generality, let D1 ∩ N [w] = {v1}. Then D1 has at most

(
n−2
3

)
vertices

from each set V (C∗
1), V (C∗

m) and V (C∗
y ), where y is odd (2 ≤ y ≤ m − 1) to-

gether with at most
(
n+1
3

)
vertices from V (C∗

z ), where z is even (2 ≤ z ≤ m− 1),

which implies that ρ(Jn,m) ≤ |D1| = 1 +
(
m+2
2

) (
n−2
3

)
+
(
m−2
2

) (
n+1
3

)
= m(2n−1)

6
. If

D1 ∩ N [w] = ϕ, then all the vertices in D1 are from V (C∗
r ), where 1 ≤ r ≤ m.

In particular, D1 contains
(
n−2
3

)
vertices for odd r and

(
n+1
3

)
vertices for even r.

Therefore, ρ(Jn,m) ≤
(
m−1
2

) (
n−2
3

)
+
(
m+1
2

) (
n+1
3

)
= 2m(n−1)+3

6
.

Next we determine the value of the open packing number for generalized Ja-
hangir graph.

Theorem 2.4. Let Jn,m be the generalized Jahangir graph with n ≥ 2 and m ≥ 3.
Then

ρo(Jn,m) =


mn
2

if n ≡ 0(mod 4)⌊
m(n−1)

2
+ 1

⌋
otherwise

Proof. For n = 2 and m ≥ 3, the set S = {v1, v2}∪
{
v2+4j : 1 ≤ j ≤

⌊
m+2
2

⌋
− 2

}
is

an open packing set of J2,m because of the intersection of open neighborhood of any
two vertices in S is empty. Therefore, ρo(J2,m) ≥ |S| = 2+

⌊
m+2
2

⌋
−2. Now, take D

as a maximal open packing of J2,m. If D contains the vertex w, then by the Obser-
vation 2.1.(i), D contains at most one vertex from N(w) and thus ρo(G) ≤ |D| ≤ 2.
Suppose w /∈ D. Then D contains exactly one vertex from N(w) and at most m

2

vertices from V (J2,m) \N [w] and hence ρo(J2,m) ≤ |D| ≤ m
2
+ 1 = m+2

2
.

Now, let the graph Jn,m with n ≥ 3 and m ≥ 3. Suppose that n ≡ 0(mod 4).
Then the set B1 =

{
v2+4j, v3+4j : 0 ≤ j ≤ nm

4
− 1

}
forms an open packing set

of Jn,m so that ρo(Jn,m) ≥ |B1| = mn
2

and by Theorems 1.5 and 1.8, we have
ρo(Jn,m) ≤ γt(Jn,m) = mn

2
. Therefore ρo(Jn,m) = mn

2
when n ≡ 0(mod 4). If

n ̸≡ 0(mod 4), then consider the following cases.

Case 1. n ≡ 1(mod 4)

The set B2 = ∪m
i=1Si ∪ {w}, where Si =

{
v(i−1)n+4a−1, v(i−1)n+4a : 1 ≤ a ≤ n−1

4

}
is an open packing set of Jn,m so that ρo(Jn,m) ≥ |B2| = m(n−1)

2
+ 1. Let us take a

maximal open packing of Jn,m be D1.

Subcase 1.1. w ∈ D1
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Suppose that D1 ∩ N(w) = ϕ. Since by Observation 2.2, D1 contains the ver-
tices only from m distinct paths Pn−3 of Jn,m mentioned in Figure 1.1. Now, by
Proposition 1.3, D1 has at most

⌊
n−1
2

⌋
vertices from each m paths in Jn,m and thus

ρo(Jn,m) ≤ |D1| ≤ 1 + m(n−1)
2

. Suppose D1 ∩ N(w) ̸= ϕ. Then by Observation
2.1.(i), |D1 ∩N(w)| = 1. Without loss of generality, let D1 ∩N(w) = {v1}. Then
D1 can have at most n−3

2
vertices from each set V (C∗

1) and V (C∗
m). Furthermore,

D1 has at most n−1
2

vertices from each set V (C∗
j ), 2 ≤ j ≤ m − 1, which implies

that ρo(Jn,m) ≤ |D1| ≤ 2 + (m− 2)
(
n−2
2

)
+ 2

(
n−3
2

)
= m(n−2)

2
+ 1.

Subcase 1.2. w /∈ D1

The set D1 contains at most n−1
2

vertices from each set V (C∗
j ), 1 ≤ j ≤ m and

exactly one vertex from N(w) so that ρo(Jn,m) ≤ |D1| = m(n−1)
2

+ 1.

Case 2. n ≡ 2(mod 4)

For 1 ≤ j ≤ m, define the sets Qj as follows. Let Q1 = {v1, v2} ∪ {v4b+1, v4b+2}
and for 2 ≤ j ≤ m, let Qj =

{
v(j−1)n+4b−1, v(j−1)n+4b

}
if j is even and let

Qj =
{
v(j−1)n+4b−2, v(j−1)n+4b−1

}
if j is odd, where 1 ≤ b ≤ n−2

4
. Now, consider

the set B3 = ∪m
j=1Qj ∪ {vzn : z is odd }, where 3 ≤ z ≤ m− 1 when m is even and

3 ≤ z ≤ m− 2 when m is odd. Since no two vertices in B3 have a common vertex
in Jn,m and thus the set B3 is an open packing set of Jn,m. Hence if m is even, then

ρo(Jn,m) ≥ |B3| = 2 + n−2
2

+ (m − 1)
(
n−2
2

)
+ m−2

2
= m(n−1)

2
+ 1 and if m if odd,

then ρo(Jn,m) ≥ |B3| = 2 + n−2
2

+ (m − 1)
(
n−2
2

)
+ m−3

2
= m(n−1)+1

2
, which implies

that ρo(Jn,m) ≥
⌊
m(n−1)

2
+ 1

⌋
. For the other inequality, let D2 be a maximal open

packing set of Jn,m. If w ∈ D2, then by similar argument in Subcase 1.1, we have

ρo(Jn,m) ≤ |D2| = m(n−1)
2

+ 1. Suppose w /∈ D2. Then |N(w) ∩D2| = 1. Then D2

has at most n−2
2

vertices from V (C∗
m) and for 1 ≤ i ≤ m − 1, the set D2 has at

most n
2
vertices from each set V (C∗

i ), (i is odd) and at most n−2
2

vertices from each

V (C∗
i ), (i is even) in Jn,m, it follows that ρ

o(Jn,m) ≤ |D2| =
⌊
m(n−1)

2
+ 1

⌋
.

Case 3. n ≡ 3(mod 4)

Consider the setB4 = ∪m
k=3Rk∪R1∪R2∪At, whereRk =

{
v(k−1)n+4c−1, v(k−1)n+4c

}
,

R1 = {v1, v2}∪{v4c+1, v4c+2}, R2 = {vn+4d−2, vn+4d−1}, At = {vtn : 3 ≤ t ≤ m− 1},
1 ≤ c ≤ n−3

4
and 1 ≤ d ≤ n+1

4
. Therefore |∪m

k=3Rk| =
∑m

k=3 |Rk| = (m − 2)
(
n−3
2

)
,

|R1| = 2 + n−3
2
, |R2| = n+1

2
and |At| = m − 3. Since no two vertices in B4

have a common neighbor so that B4 forms an open packing set of Jn,m and hence

ρo(Jn,m) ≥ |B4| = m(n−1)
2

+ 1. Now, take D3 as a maximal open packing of Jn,m.
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Subcase 3.1. w ∈ D3

Suppose D3 ∩ N(w) = ϕ. Then by Observation 2.2.(i), |D3| = mρo(Pn−3) + 1

and by Proposition 1.3, ρo(Pn−3) =
n−3
2

so that ρo(Jn,m) ≤ |D3| = 1 + m(n−3)
2

. If
D3∩N(w) ̸= ϕ, then by Observation 2.1.(i), |D3 ∩N(w)| = 1 and let D3∩N(w) =
{v1}. Since v1 ∈ D3 and by Observation 2.2, the vertices v3 and vmn−1 does not
belong to D3. Thus D3 can have vertices from each two paths Pn−4 placed on C1

and Cm and from remaining (m−2) paths Pn−3 (mentioned in Figure 1.2.) in Jn,m.
It follows that |D3| = 2ρo(Pn−4) + (m − 2)ρo(Pn−3) + 2 and by Proposition 1.3,
|D3| = 2

⌊
n−2
2

⌋
+ (m− 2)

(
n−3
2

)
+ 2. Hence ρo(Jn,m) ≤ |D3|

Subcase 3.2. w /∈ D3

In this case D3 contains exactly one vertex from N(w) and D3 contains at
most n+1

2
vertices from V (C∗

1) and at most n−3
2

vertices from V (C∗
m). Moreover D3

contain at most n−1
2

each set V (C∗
j ), 2 ≤ j ≤ m − 1 so that ρo(Jn,m) ≤ |D3| =

1 + m(n−1)
2

. This completes the proof.

The following theorem gives the exact value of an outer-connected open packing
set for the Jahangir graph Jn,m.

Theorem 2.5. For a generalized Jahangir graph Jn,m with n ≥ 2 and m ≥ 3, we
have

ρooc(Jn,m) =


⌈
m−1
2

⌉
+ 1 if n = 2

m+ 1 if n = 3

2m if n ≥ 4

Proof. Let n = 2 and m ≥ 3. Then the set S = {v1}∪
{
v4i+2 : 0 ≤ i ≤

⌈
m−1
2

⌉
− 1

}
is open packing and ⟨V (J2,m) \ S⟩ is connected and hence S is an ocop-set of J2,m
so that ρooc(J2,m) ≥

⌈
m−1
2

⌉
+ 1. Now, let D be a maximal ocop-set of J2,m. Then

D should contains exactly one vertex in N(w), let it be x. Furthermore, if w ∈ D
then ⟨J2,m \ {w, x}⟩ is isomorphic to the path Pnm−1. Since each internal vertex of
a path is a cut vertex, it follows that D does not contains any internal vertex of
Pnm−1 and by Observation 2.2, end vertices of Pnm−1 does not belong to D and so
D = {w, x} is the one and only ocop-set of J2,m. If w /∈ D, then D has exactly one
vertex from each cycle Ci where 1 ≤ i ≤ m − 1 and i is odd, which implies that
|D| ≤

⌈
m−1
2

⌉
+ 1 and hence ρooc(J2,m) =

⌈
m−1
2

⌉
+ 1.

If n = 3 and m ≥ 3, then the set S1 = {v1, v2, v5} ∪ {v3j+3 : 1 ≤ j ≤ m− 2} is
an ocop-set of J3,m and therefore ρooc(J3,m) ≥ m+ 1. Now, from the Thereoms 1.5,
1.8 and 1.9, we have ρooc(G) ≤ ρo(Jn,m) ≤ γt(Jn,m) = m+ 1.
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Now, consider the graph Jn,m for all n ≥ 4 and m ≥ 3. For 1 ≤ i, j ≤ 2m, define
the set S2 = {v2i : i is odd} ∪ {v2j−1 : j is even}. Then the graph ⟨V (Jn,m) \ S2⟩ is
connected and no two vertices of S2 have a common neighbor in Jn,m, which leads
that S2 is an ocop-set of Jn,m and hence ρooc(Jn,m) ≥ 2m.

For the other inequality let D1 be a maximal ocop-set of Jn,m. Suppose w ∈ D1.
Then by Observation 2.1.(i), |D1 ∩N(w)| ≤ 1. If |D1 ∩N(w)| = 1, then |D1| = 2.
Suppose |D1 ∩N(w)| = 0. Then by Observation 2.2 and by the definition of ocop-
set, D1 has exactly one vertex from V (Jn,m)\N [w] when n = 4 and D1 has exactly
one pair of adjacent vertices from V (Jn,m) \N [w] when n ≥ 5 so that |D1| ≤ 3.

Now, consider the set D1 such that w /∈ D1. If D1 ∩ N(w) = ϕ, then D1 has
exactly two adjacent vertices from each set V (Cr) \ N [w], where 1 ≤ r ≤ m, and
hence |D1| ≤ 2m; Otherwise let D1 ∩ N(w) = {z}. Then D1 has exactly one
vertex which is adjacent to z from the two consecutive cycles Cs and Ct in which
the cycles Cs and Ct share the common edge wz, where 1 ≤ s, t ≤ m and s ̸= t.
Moreover, from each set V (Ck) \N [w], one pair of adjacent vertices belong to D1,
where 1 ≤ k ≤ m and k ̸= s, t, which gives that |D1| ≤ 2 + 2m − 4 = 2m − 2.
Hence in all possibilities of the set D1, we have ρooc(Jn,m) ≤ 2m.

3. Conclusion
In this paper, we completely determined some packing related parameters such

as 2-packing number, open packing number, and outer-connected open packing
number for the generalized Jahangir graph. In this way, finding the values of k-
limited packing number for all k ≥ 2 of generalized Jahangir graph Jn,m is an
interesting one.
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